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ABSTRACT

The free-radical-mediated bromoallylation of acetylenes proceeded efficiently in the presence of V-65 (2,2-azobis(2,4-dimethylvaleronitrile)) as
the radical initiator. The regioselective reaction, which yields 1-bromo-2-substituted 1,4-dienes, is complementary to the Pd-catalyzed
bromoallylation reaction previously reported by Kaneda. The products of the free-radical-mediated bromoallylation of acetylenes could be
converted into a variety of substituted dienes by subsequent Pd-catalyzed reactions.

Bromoallylation of acetylenes, one of the most basic transforma-
tions, can lead to bromo-substituted 1,4-dienes, which are versatile
synthetic building blocks. In principle the bromoallylation of
terminal acetylenes can give type A and B of 1,4-dienes (eq 1).
Therefore, control of the regiochemistry is essential for the
bromoallylation reaction to be synthetically useful.

In 1974, Kaneda and co-workers reported that bis(ben-
zonitrile)palladium dibromide catalyzed bromo-allylation of
terminal acetylenes to selectively yield type A 4-bromo-1.4-
dienes.1 Subsequently, other research groups studied the use

of zinc chloride2a and other palladium complexes2b,c as
catalysts and observed that the A dienes were favored in
these reactions. In the reactions that used supported Pd
complexes, such as Pd on diphenylbenzylphosphine-func-
tionalized polymer3 or Pd on Al2O3,

4 a mixture of type A
and B 1,4-dienes formed, in which the A dienes were the
major products (>75%). However, the regioselective bro-
moallylation of acetylenes to give type B bromo-dienes has
yet to be achieved. Herein, we report that the free-radical-
mediated bromoallylation of acetylenes with allylbromide
proceeded regioselectivity to give type B 1-bromo-2-
substituted 1,4-dienes in good yields (Scheme 1).5
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We examined the reaction of phenylacetylene (1a) and
allylbromide (2a) as a model system under a variety of radical
reaction conditions. The results are summarized in Table 1.

When a mixture of 1a (1 mmol), 2a (1 mL, 11.5 mmol), and
30 mol % V-65 (2,2-azobis(2,4-dimethyl-valeronitrile); half-
life ) 2 h at 60 °C) was stirred at 60 °C under an argon
atmosphere, the bromoallylated product 3a was obtained in 37%
yield (entry 1). Although the yields were rather low, we were
pleased that the reaction was regioselective for the type B diene,
as the regioisomer was not present in the crude reaction mixture.
When the amount of 2a was increased to 5 mL, the yield of 3a
was increased to 80% (entry 3). Reducing the amount of the
radical initiator to 20 mol % did not affect the yield of 3a (entry
4), whereas when 10 mol % of V-65 was used, a significant
amount of 1a remained unreacted (entry 5). The reaction using
AIBN (2,2-azobisisobutyronitrile; half-life ) 2 h at 80 °C) as
the radical initiator at 80 °C and photoirradiation conditions at
room temperature gave results similar to that obtained with V-65
(entry 6 and 7).

After we identified the optimal reaction conditions, we
investigated the generality of the free-radical-mediated bro-
moallylation, the results of which are shown in Table 2.

Table 2. Synthesis of Bromo-1,4-dienes by
Free-Radical-Mediated Bromoallylation of Acetylenesa

a Conditions: acetylenes 1 (1.0 mmol), allylbromides 2 (5 mL, 58.0
mmol), V-65 (0.2 mmol), 60 °C, 6 h under an argon atmosphere. b Isolated
yield by silica gel chromatography based on 1. c Determined by 1H NMR
of the crude reaction mixture.

Scheme 1. Bromoallylation of Acetylenes

Table 1. Free-Radical-Mediated Bromoallylation Reaction of
Phenylacetylene (1a) and Allylbromide (2a) in the Presence of
Radical Initiator

entry 2a (mL) initiator (mol %) temp (°C) yielda (%) E/Zb

1 1 V-65 (30) 60 37c 9/91
2 3 V-65 (30) 60 62 19/81
3 5 V-65 (30) 60 80 13/87
4 5 V-65 (20) 60 80 23/77
5 5 V-65 (10) 60 60 13/87
6 5 AIBN (20) 80 78 15/85
7d 5 AIBN (20) rt 79 19/81

a Isolated yield based on 1. b Determined by 1H NMR of the crude
reaction mixture. c Determined by 1H NMR using anisole as internal
standard. d Under photo irradiation (xenon lamp 300 W, Pyrex).
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Irrespective of whether the substituents of the aryl acetylenes
were electron-donating or electron-withdrawing, the bromoal-
lylation reaction proceeded well to give the corresponding 1,4-
dienes in good yield. (entries 2-5). The reactions with the Cl-
phenyl-substituted terminal alkynes proceeded smoothly regardless
of the position of the Cl on the ring of the phenyl group (entries
6-8). The reaction of 2,5-dimethoxyphenyl acetylene (1i) with
2a gave 1-bromo-2-(2,5-dimethoxyphenyl)-1,4-pentadiene (3i)
in 90% yield (entry 9). The reactions of the 1- and 2-naphtyl-
substituted acetylenes, 1j and 1k also proceeded well (entries
10 and 11). Interestingly, the reaction of 1j with 2a gave the E
isomer almost exclusively, unlike the other reaction shown in
Table 2 (vide infra).

The reaction also worked well for acetylenes with a
heteroaromatic substituent, such as 1l (entry 12). The reaction
with ethyl propiolate (1m) and with DMAD (dimethyl
acetylenedicarboxylate, 1n) gave the corresponding 1,4-
dienes in 86% and 49% yield, respectively (entries 13 and
14). Aliphatic acetylenes, such as 1-hexyne, gave only traces
of the bromoallylated product (2%). We also examined
several substituted allylic bromides. The reaction using
�-methallyl bromide (2b) proceeded smoothly to give
1-bromo-1,4-diene 3o in 95% yield (entry 15). In contrast,
no reaction took place with crotyl bromide or prenyl bromide,
presumably due to the steric hindrance caused by the
substitution at the 3-position. Surprisingly, the reaction of
1a with 3-bromo-1-hexene (2c) was unsuccessful. The
reaction did not proceed because of radical-mediated isomer-
ization of 2c to the unreactive crotyl like 2d during the
reaction. This isomerization behavior was confirmed by a
separate experiment (eq 2).

A reaction mechanism for the free-radical-mediated bro-
moallylation of acetylenes is outlined in Scheme 2, which
employs the reaction of 1a with 2a as an example. Tanko
and co-workers recently reported that bromine radicals act
as chain propagators,6 and this mechanism might be operative
even in our system. Thus, thermal decomposition of V-65
generates the initiating radicals, which add to allylbromide
to generate bromo radicals. The bromo radicals then selec-
tively attack the acetylene terminus to form vinyl radicals.
The resulting vinyl radicals react with allylbromide in an
SH2′ manner, which gives 1-bromo-2-phenyl-1,4-diene and
regenerates bromo radicals, thus creating a radical chain.7

In general, Z-forms are preferred because the site of attack
by allylbromide is less hindered.
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(7) A similar mechanism was proposed in radical addition of allylic
sulfones to phenylacetylene; see: Harvey, I. W.; Philips, E. D.; Whitham,
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Scheme 2. Proposed Reaction Mechanism Scheme 3. Three-Component Processes with the Subsequent
Pd-Catalyzed Reactions
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For the exception 1j, the E-vinyl radical was preferred
due to the steric hindrance caused by bromine and peri-
hydrogen (eq 3).

The products 3 that resulted from the present radical
reaction involved terminal vinyl bromide substructures,
which readily undergo Pd-catalyzed reactions (Scheme 3).8,9

Indeed, the carbonylation10 of 3n proceeded smoothly under
10 atm of carbon monoxide to yield the corresponding R,�-
unsaturated ester 4 in 80% yield. One-pot syntheses of 2-aryl-
1,4-pentadiene (5a, 5b), 2-methyl-6-phenyl-5,8-nonadiene-
3-yn-2-ol (6), and 1-(4-methoxy-phenyl)-2-phenyl-1,4-
pentadiene (7) were successfully achieved via a palladium-
catalyzed, formic acid reduction,11 the Sonogashira

reaction,12 and the Suzuki-Miyaura coupling reaction,13

respectively.

In conclusion, the free-radical-mediated bromo-allylation
reactions of acetylenes with allylbromides gave regioselective
1-bromo-2-substituted-1,4-dienes. The observed regioselec-
tivity was complementary to that previously reported for
palladium-catalyzed reactions. The bromoallylation procedure
was successfully combined with carbonylation, a Pd-
catalyzed reduction, the Sonogashira reaction, or the
Suzuki-Miyaura coupling reaction to provide a variety of
substituted 1,4-dienes, in a two-step process.
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